A Krylov subspace method for large estimation problems
نویسندگان
چکیده
Computing the linear least-squares estimate of a high-dimensional random quantity given noisy data requires solving a large system of linear equations. In many situations, one can solve this system efficiently using the conjugate gradient (CG) algorithm. Computing the estimation error variances is a more intricate task. It is difficult because the error variances are the diagonal elements of a complicated matrix. This paper presents a method for using the conjugate search directions generated by the CG algorithm to obtain a converging approximation to the estimation error variances. The algorithm for computing the error variances falls out naturally from a novel estimation-theoretic interpretation of the CG algorithm. The paper discusses this interpretation and convergence issues and presents numerical examples.
منابع مشابه
Computing Covariance Matrices for Constrained Nonlinear Large Scale Parameter Estimation Problems Using Krylov Subspace Methods
In the paper we show how, based on the preconditioned Krylov subspace methods, to compute the covariance matrix of parameter estimates, which is crucial for efficient methods of optimum experimental design. Mathematics Subject Classification (2000). Primary 65K10; Secondary 15A09, 65F30.
متن کاملSolving large systems arising from fractional models by preconditioned methods
This study develops and analyzes preconditioned Krylov subspace methods to solve linear systems arising from discretization of the time-independent space-fractional models. First, we apply shifted Grunwald formulas to obtain a stable finite difference approximation to fractional advection-diffusion equations. Then, we employee two preconditioned iterative methods, namely, the preconditioned gen...
متن کاملLarge-scale Inversion of Magnetic Data Using Golub-Kahan Bidiagonalization with Truncated Generalized Cross Validation for Regularization Parameter Estimation
In this paper a fast method for large-scale sparse inversion of magnetic data is considered. The L1-norm stabilizer is used to generate models with sharp and distinct interfaces. To deal with the non-linearity introduced by the L1-norm, a model-space iteratively reweighted least squares algorithm is used. The original model matrix is factorized using the Golub-Kahan bidiagonalization that proje...
متن کاملGreedy Tikhonov regularization for large linear ill-posed problems
Several numerical methods for the solution of large linear ill-posed problems combine Tikhonov regularization with an iterative method based on partial Lanczos bidiagonalization of the operator. This paper discusses the determination of the regularization parameter and the dimension of the Krylov subspace for this kind of methods. A method that requires a Krylov subspace of minimal dimension is...
متن کاملPreconditioned Generalized Minimal Residual Method for Solving Fractional Advection-Diffusion Equation
Introduction Fractional differential equations (FDEs) have attracted much attention and have been widely used in the fields of finance, physics, image processing, and biology, etc. It is not always possible to find an analytical solution for such equations. The approximate solution or numerical scheme may be a good approach, particularly, the schemes in numerical linear algebra for solving ...
متن کاملImage Deblurring with Krylov Subspace Methods
Image deblurring, i.e., reconstruction of a sharper image from a blurred and noisy one, involves the solution of a large and very ill-conditioned system of linear equations, and regularization is needed in order to compute a stable solution. Krylov subspace methods are often ideally suited for this task: their iterative nature is a natural way to handle such largescale problems, and the underly...
متن کامل